skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shu, Wen‐sheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Microbes, similar to plants and animals, exhibit biogeographic patterns. However, in contrast with the considerable knowledge on the island biogeography of higher organisms, we know little about the distribution of microorganisms within and among islands. Here, we explored insular soil bacterial and fungal biogeography and underlying mechanisms, using soil microbiota from a group of land-bridge islands as a model system. Similar to island species-area relationships observed for many macroorganisms, both island-scale bacterial and fungal diversity increased with island area; neither diversity, however, was affected by island isolation. By contrast, bacterial and fungal communities exhibited strikingly different assembly patterns within islands. The loss of bacterial diversity on smaller islands was driven primarily by the systematic decline of diversity within samples, whereas the loss of fungal diversity on smaller islands was driven primarily by the homogenization of community composition among samples. Lower soil moisture limited within-sample bacterial diversity, whereas smaller spatial distances among samples restricted among-sample fungal diversity, on smaller islands. These results indicate that among-island differences in habitat quality generate the bacterial island species-area relationship, whereas within-island dispersal limitation generates the fungal island species-area relationship. Together, our study suggests that different mechanisms underlie similar island biogeography patterns of soil bacteria and fungi. 
    more » « less
  2. Abstract Elton's biotic resistance hypothesis, which posits that diverse communities should be more resistant to biological invasions, has received considerable experimental support. However, it remains unclear whether such a negative diversity–invasibility relationship would persist under anthropogenic environmental change. By using the common ragweed (Ambrosia artemisiifolia) as a model invader, our 4‐year grassland experiment demonstrated consistently negative relationships between resident species diversity and community invasibility, irrespective of nitrogen addition, a result further supported by a meta‐analysis. Importantly, our experiment showed that plant diversity consistently resisted invasion simultaneously through increased resident biomass, increased trait dissimilarity among residents, and increased community‐weighted means of resource‐conservative traits that strongly resist invasion, pointing to the importance of both trait complementarity and sampling effects for invasion resistance even under resource enrichment. Our study provides unique evidence that considering species’ functional traits can help further our understanding of biotic resistance to biological invasions in a changing environment. 
    more » « less